Compare commits
3 commits
master
...
some-buffe
Author | SHA1 | Date | |
---|---|---|---|
|
c9d179c33f | ||
|
57880ef70a | ||
|
970bb5187a |
6 changed files with 196 additions and 602 deletions
33
Cargo.lock
generated
33
Cargo.lock
generated
|
@ -73,7 +73,6 @@ dependencies = [
|
|||
"libc",
|
||||
"nix",
|
||||
"png",
|
||||
"socket2",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -132,35 +131,3 @@ name = "simd-adler32"
|
|||
version = "0.3.7"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d66dc143e6b11c1eddc06d5c423cfc97062865baf299914ab64caa38182078fe"
|
||||
|
||||
[[package]]
|
||||
name = "socket2"
|
||||
version = "0.4.10"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "9f7916fc008ca5542385b89a3d3ce689953c143e9304a9bf8beec1de48994c0d"
|
||||
dependencies = [
|
||||
"libc",
|
||||
"winapi",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "winapi"
|
||||
version = "0.3.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
|
||||
dependencies = [
|
||||
"winapi-i686-pc-windows-gnu",
|
||||
"winapi-x86_64-pc-windows-gnu",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "winapi-i686-pc-windows-gnu"
|
||||
version = "0.4.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
|
||||
|
||||
[[package]]
|
||||
name = "winapi-x86_64-pc-windows-gnu"
|
||||
version = "0.4.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
|
||||
|
|
|
@ -7,4 +7,3 @@ edition = "2024"
|
|||
png = "0.17"
|
||||
libc = "0.2"
|
||||
nix = { version = "0.29", features = ["socket", "uio"] }
|
||||
socket2 = "0.4.7"
|
||||
|
|
132
src/buffer.rs
Normal file
132
src/buffer.rs
Normal file
|
@ -0,0 +1,132 @@
|
|||
use std::sync::{Arc, Condvar, Mutex};
|
||||
use std::thread;
|
||||
use std::time::Duration;
|
||||
// Using MaybeUninit is the idiomatic way to handle a buffer
|
||||
// of potentially uninitialized items without requiring a Default trait.
|
||||
use std::mem::MaybeUninit;
|
||||
|
||||
/// A fixed-capacity, overwriting ring buffer.
|
||||
pub struct RingBuffer<T, const N: usize> {
|
||||
buffer: [MaybeUninit<T>; N],
|
||||
head: usize,
|
||||
tail: usize,
|
||||
size: usize,
|
||||
}
|
||||
|
||||
impl<T, const N: usize> RingBuffer<T, N> {
|
||||
/// Creates a new, empty RingBuffer.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
// This is a safe way to create an array of uninitialized data.
|
||||
buffer: unsafe { MaybeUninit::uninit().assume_init() },
|
||||
head: 0,
|
||||
tail: 0,
|
||||
size: 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Checks if the buffer is empty.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.size == 0
|
||||
}
|
||||
|
||||
/// Pushes an item into the buffer.
|
||||
/// If the buffer is full, the oldest item is overwritten.
|
||||
pub fn push(&mut self, item: T) {
|
||||
// Write the item to the tail position.
|
||||
// This is safe because we manage initialization with `size`.
|
||||
self.buffer[self.tail].write(item);
|
||||
self.tail = (self.tail + 1) % N;
|
||||
|
||||
if self.size < N {
|
||||
// Buffer is not full, just increment size.
|
||||
self.size += 1;
|
||||
} else {
|
||||
// Buffer was full. The push overwrote the oldest item.
|
||||
// The head must also advance to the new oldest item.
|
||||
self.head = (self.head + 1) % N;
|
||||
}
|
||||
}
|
||||
|
||||
/// Pops an item from the buffer.
|
||||
/// Returns None if the buffer is empty.
|
||||
pub fn pop(&mut self) -> Option<T> {
|
||||
if self.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Read the item from the head, leaving that slot uninitialized.
|
||||
// This is safe because is_empty() check ensures `head` points to valid data.
|
||||
let item = unsafe { self.buffer[self.head].assume_init_read() };
|
||||
self.head = (self.head + 1) % N;
|
||||
self.size -= 1;
|
||||
Some(item)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
const CAPACITY: usize = 5;
|
||||
println!("Ring Buffer Capacity: {}", CAPACITY);
|
||||
println!("Producer will produce 15 items, so overwrites are expected.");
|
||||
|
||||
// The state is shared between threads using an Arc (Atomic Reference Counter).
|
||||
// The Mutex ensures exclusive access, and the Condvar allows threads to wait efficiently.
|
||||
let pair = Arc::new((
|
||||
Mutex::new(RingBuffer::<i32, CAPACITY>::new()),
|
||||
Condvar::new(),
|
||||
));
|
||||
|
||||
// --- Producer Thread ---
|
||||
let producer_pair = Arc::clone(&pair);
|
||||
let producer_handle = thread::spawn(move || {
|
||||
for i in 0..15 {
|
||||
// Lock the mutex to get exclusive access to the buffer.
|
||||
let (lock, cvar) = &*producer_pair;
|
||||
let mut buffer = lock.lock().unwrap();
|
||||
|
||||
buffer.push(i);
|
||||
println!("➡️ Produced: {}", i);
|
||||
|
||||
// This is crucial: after adding an item, we notify one waiting thread.
|
||||
cvar.notify_one();
|
||||
|
||||
// We don't need the lock anymore, so we can drop it explicitly
|
||||
// before sleeping to allow the consumer to work.
|
||||
drop(buffer);
|
||||
thread::sleep(Duration::from_millis(100)); // Producer is fast
|
||||
}
|
||||
println!("✅ Producer finished.");
|
||||
});
|
||||
|
||||
// --- Consumer Thread ---
|
||||
let consumer_pair = Arc::clone(&pair);
|
||||
let consumer_handle = thread::spawn(move || {
|
||||
let mut items_processed = 0;
|
||||
while items_processed < 15 {
|
||||
let (lock, cvar) = &*consumer_pair;
|
||||
let mut buffer = lock.lock().unwrap();
|
||||
|
||||
// Use a while loop to handle spurious wakeups.
|
||||
// The thread will sleep until the buffer is no longer empty.
|
||||
while buffer.is_empty() {
|
||||
// `cvar.wait` atomically unlocks the mutex and waits.
|
||||
// When woken, it re-locks the mutex before returning.
|
||||
buffer = cvar.wait(buffer).unwrap();
|
||||
}
|
||||
|
||||
// At this point, the buffer is not empty.
|
||||
if let Some(item) = buffer.pop() {
|
||||
println!(" Consumed: {}", item);
|
||||
items_processed += 1;
|
||||
}
|
||||
|
||||
drop(buffer);
|
||||
thread::sleep(Duration::from_millis(300)); // Consumer is slow
|
||||
}
|
||||
println!("✅ Consumer finished.");
|
||||
});
|
||||
|
||||
producer_handle.join().unwrap();
|
||||
consumer_handle.join().unwrap();
|
||||
}
|
||||
|
69
src/color.rs
69
src/color.rs
|
@ -1,69 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
/// Represents a color in the RGB (Red, Green, Blue) model.
|
||||
/// Values range from 0 to 255.
|
||||
pub struct Rgb {
|
||||
pub r: u8,
|
||||
pub g: u8,
|
||||
pub b: u8,
|
||||
}
|
||||
|
||||
/// Represents a color in the HSV (Hue, Saturation, Value) model.
|
||||
/// - `h` (hue): 0-359 degrees
|
||||
/// - `s` (saturation): 0.0-1.0
|
||||
/// - `v` (value/brightness): 0.0-1.0
|
||||
pub struct Hsv {
|
||||
pub h: u16,
|
||||
pub s: f32,
|
||||
pub v: f32,
|
||||
}
|
||||
|
||||
// Implement the `Debug` trait for Rgb to allow pretty-printing.
|
||||
impl fmt::Debug for Rgb {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "Rgb({}, {}, {})", self.r, self.g, self.b)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Provides the conversion logic from HSV to RGB.
|
||||
/// This uses the standard mathematical formula for the conversion.
|
||||
impl From<Hsv> for Rgb {
|
||||
fn from(hsv: Hsv) -> Self {
|
||||
// Ensure saturation and value are within the valid range [0.0, 1.0]
|
||||
let s = hsv.s.clamp(0.0, 1.0);
|
||||
let v = hsv.v.clamp(0.0, 1.0);
|
||||
|
||||
// When saturation is 0, the color is a shade of gray.
|
||||
if s == 0.0 {
|
||||
let val = (v * 255.0) as u8;
|
||||
return Rgb { r: val, g: val, b: val };
|
||||
}
|
||||
|
||||
// The hue is treated as a sector on a color wheel.
|
||||
let h = hsv.h as f32 / 60.0; // Sector 0-5
|
||||
let i = h.floor() as i32;
|
||||
let f = h - i as f32; // Fractional part of h
|
||||
|
||||
let p = v * (1.0 - s);
|
||||
let q = v * (1.0 - f * s);
|
||||
let t = v * (1.0 - (1.0 - f) * s);
|
||||
|
||||
// Determine the RGB values based on the hue sector.
|
||||
let (r, g, b) = match i {
|
||||
0 => (v, t, p),
|
||||
1 => (q, v, p),
|
||||
2 => (p, v, t),
|
||||
3 => (p, q, v),
|
||||
4 => (t, p, v),
|
||||
_ => (v, p, q), // Default case for sector 5
|
||||
};
|
||||
|
||||
// Convert the float RGB values (0.0-1.0) to u8 values (0-255).
|
||||
Rgb {
|
||||
r: (r * 255.0).round() as u8,
|
||||
g: (g * 255.0).round() as u8,
|
||||
b: (b * 255.0).round() as u8,
|
||||
}
|
||||
}
|
||||
}
|
272
src/main-new.rs
272
src/main-new.rs
|
@ -1,272 +0,0 @@
|
|||
|
||||
use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
use std::net::{ToSocketAddrs, UdpSocket};
|
||||
use std::os::unix::io::{AsRawFd, RawFd};
|
||||
use std::time::Duration;
|
||||
|
||||
// Nix crate for sendmmsg
|
||||
use nix::sys::socket::{sendmmsg, MsgFlags, SendMmsgData};
|
||||
use nix::sys::uio::IoVec;
|
||||
|
||||
// Constants from the C code
|
||||
const QUEUE_LEN: usize = 1000;
|
||||
const MSG_PAYLOAD_SIZE: usize = 7 * 160;
|
||||
const MSGSIZE: usize = 2 + MSG_PAYLOAD_SIZE;
|
||||
|
||||
const DISPLAY_HOST: &str = "100.65.0.2";
|
||||
const DISPLAY_PORT: u16 = 5005;
|
||||
const DISPLAY_WIDTH: i32 = 1920;
|
||||
const DISPLAY_HEIGHT: i32 = 1080;
|
||||
|
||||
/// Represents the data decoded from a PNG file.
|
||||
struct PngData {
|
||||
width: u32,
|
||||
height: u32,
|
||||
pixels: Vec<u8>,
|
||||
}
|
||||
|
||||
impl PngData {
|
||||
/// Loads and decodes a PNG image from the given path.
|
||||
fn open(path: &str) -> Result<Self, png::DecodingError> {
|
||||
let file = File::open(path).expect("Failed to open PNG file");
|
||||
let decoder = png::Decoder::new(BufReader::new(file));
|
||||
let mut reader = decoder.read_info()?;
|
||||
let mut buf = vec![0; reader.output_buffer_size()];
|
||||
let info = reader.next_frame(&mut buf)?;
|
||||
|
||||
Ok(PngData {
|
||||
width: info.width,
|
||||
height: info.height,
|
||||
pixels: buf,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents a bouncing image on the screen.
|
||||
struct BouncingImage {
|
||||
img: PngData,
|
||||
x: i32,
|
||||
y: i32,
|
||||
x1: i32,
|
||||
y1: i32,
|
||||
x2: i32,
|
||||
y2: i32,
|
||||
move_x: i32,
|
||||
move_y: i32,
|
||||
rate: u32,
|
||||
}
|
||||
|
||||
impl BouncingImage {
|
||||
/// Initializes a new BouncingImage.
|
||||
fn new(img_file: &str, move_x: i32, move_y: i32, rate: u32, start_x: i32, start_y: i32) -> Self {
|
||||
let img = PngData::open(img_file).expect("Could not load image");
|
||||
let mut bb = BouncingImage {
|
||||
x2: DISPLAY_WIDTH - img.width as i32,
|
||||
y2: DISPLAY_HEIGHT - img.height as i32,
|
||||
img,
|
||||
x: start_x,
|
||||
y: start_y,
|
||||
x1: 0,
|
||||
y1: 0,
|
||||
move_x,
|
||||
move_y,
|
||||
rate,
|
||||
};
|
||||
if bb.x == -1 {
|
||||
bb.x = (bb.x1 + bb.x2) / 2;
|
||||
}
|
||||
if bb.y == -1 {
|
||||
bb.y = (bb.y1 + bb.y2) / 2;
|
||||
}
|
||||
bb
|
||||
}
|
||||
|
||||
/// Draws the image and updates its position.
|
||||
fn draw_and_move(&mut self, display: &mut Display) {
|
||||
display.draw_png(&self.img, self.x, self.y);
|
||||
|
||||
self.x += self.move_x;
|
||||
self.y += self.move_y;
|
||||
|
||||
if self.x < self.x1 || self.x > self.x2 {
|
||||
self.move_x *= -1;
|
||||
}
|
||||
if self.y < self.y1 || self.y > self.y2 {
|
||||
self.move_y *= -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Manages the connection and data sent to the display.
|
||||
struct Display {
|
||||
fd: RawFd,
|
||||
bufs: Vec<[u8; MSGSIZE]>,
|
||||
lens: Vec<usize>, // Stores the actual length of data in each buffer
|
||||
next_buf: usize, // The next buffer in the queue to be filled
|
||||
send_next: usize, // The next buffer in the queue to be sent
|
||||
pos_in_buf: usize,
|
||||
// Keep the socket alive to keep the file descriptor valid
|
||||
_socket: UdpSocket,
|
||||
}
|
||||
|
||||
impl Display {
|
||||
/// Creates a new Display and connects to the specified host and port.
|
||||
fn new(host: &str, port: u16) -> Self {
|
||||
let remote_addr = (host, port)
|
||||
.to_socket_addrs()
|
||||
.expect("Invalid remote address")
|
||||
.next()
|
||||
.expect("Could not resolve host");
|
||||
|
||||
let socket = UdpSocket::bind("0.0.0.0:0").expect("Could not bind to local port");
|
||||
socket.connect(remote_addr).expect("Could not connect to remote");
|
||||
let fd = socket.as_raw_fd();
|
||||
|
||||
let mut bufs = vec![[0; MSGSIZE]; QUEUE_LEN];
|
||||
for buf in bufs.iter_mut() {
|
||||
buf[0] = 0x00;
|
||||
buf[1] = 0x01;
|
||||
}
|
||||
|
||||
Display {
|
||||
fd,
|
||||
bufs,
|
||||
lens: vec![0; QUEUE_LEN],
|
||||
next_buf: 0,
|
||||
send_next: 0,
|
||||
pos_in_buf: 0,
|
||||
_socket: socket,
|
||||
}
|
||||
}
|
||||
|
||||
/// Marks the current buffer as ready to be sent and moves to the next one.
|
||||
fn mark_buffer_ready(&mut self) {
|
||||
if self.pos_in_buf > 0 {
|
||||
self.lens[self.next_buf] = 2 + self.pos_in_buf * 7;
|
||||
self.next_buf = (self.next_buf + 1) % QUEUE_LEN;
|
||||
self.pos_in_buf = 0;
|
||||
|
||||
// If we've wrapped around and caught up to the send queue,
|
||||
// we must flush to avoid overwriting data that hasn't been sent.
|
||||
if self.next_buf == self.send_next {
|
||||
eprintln!("Warning: Buffer queue full. Forcing a flush.");
|
||||
self.flush_all_pending();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends all queued packets using the efficient `sendmmsg` syscall.
|
||||
fn flush_all_pending(&mut self) {
|
||||
// First, ensure the current, partially-filled buffer is marked as ready.
|
||||
self.mark_buffer_ready();
|
||||
|
||||
if self.send_next == self.next_buf {
|
||||
return; // Nothing to send.
|
||||
}
|
||||
|
||||
// We build a temporary list of message headers to pass to sendmmsg.
|
||||
// This is the cleanest way to handle the circular buffer.
|
||||
let mut iovecs_storage = Vec::new();
|
||||
let mut messages_to_send = Vec::new();
|
||||
|
||||
let mut current_idx = self.send_next;
|
||||
while current_idx != self.next_buf {
|
||||
let data_slice = &self.bufs[current_idx][..self.lens[current_idx]];
|
||||
iovecs_storage.push(IoVec::from_slice(data_slice));
|
||||
current_idx = (current_idx + 1) % QUEUE_LEN;
|
||||
}
|
||||
|
||||
// Since we used `connect()`, the kernel knows the destination address,
|
||||
// so we can pass `None` for the address in `SendMmsgData`.
|
||||
for iov in &iovecs_storage {
|
||||
messages_to_send.push(SendMmsgData {
|
||||
iov: &[*iov],
|
||||
addr: None,
|
||||
cmsgs: &[],
|
||||
_phantom: std::marker::PhantomData,
|
||||
});
|
||||
}
|
||||
|
||||
if messages_to_send.is_empty() {
|
||||
return;
|
||||
}
|
||||
|
||||
// Perform the `sendmmsg` syscall
|
||||
match sendmmsg(self.fd, &messages_to_send, MsgFlags::empty()) {
|
||||
Ok(num_sent) => {
|
||||
// Advance the send queue by the number of packets actually sent.
|
||||
self.send_next = (self.send_next + num_sent) % QUEUE_LEN;
|
||||
}
|
||||
Err(e) => {
|
||||
// Non-blocking sockets might return an error indicating to try again.
|
||||
// For this example, we'll just log other errors.
|
||||
if e != nix::errno::Errno::EAGAIN && e != nix::errno::Errno::EWOULDBLOCK {
|
||||
eprintln!("Failed to send messages with sendmmsg: {}", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets a pixel color at a specific coordinate.
|
||||
fn set_pixel(&mut self, x: u16, y: u16, r: u8, g: u8, b: u8) {
|
||||
let offset = 2 + self.pos_in_buf * 7;
|
||||
let buf = &mut self.bufs[self.next_buf][offset..offset + 7];
|
||||
buf[0] = x as u8;
|
||||
buf[1] = (x >> 8) as u8;
|
||||
buf[2] = y as u8;
|
||||
buf[3] = (y >> 8) as u8;
|
||||
buf[4] = r;
|
||||
buf[5] = g;
|
||||
buf[6] = b;
|
||||
|
||||
self.pos_in_buf += 1;
|
||||
if self.pos_in_buf == 160 {
|
||||
self.mark_buffer_ready();
|
||||
}
|
||||
}
|
||||
|
||||
/// Draws a PNG image at the given coordinates.
|
||||
fn draw_png(&mut self, png: &PngData, x: i32, y: i32) {
|
||||
for sy in 0..png.height {
|
||||
for sx in 0..png.width {
|
||||
let index = (sy * png.width + sx) as usize * 4;
|
||||
let rgba = &png.pixels[index..index + 4];
|
||||
if rgba[3] > 0 { // Check alpha channel
|
||||
self.set_pixel((x + sx as i32) as u16, (y + sy as i32) as u16, rgba[0], rgba[1], rgba[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let mut images = vec![
|
||||
BouncingImage::new("images/unicorn_cc.png", 13, -10, 1, -1, -1),
|
||||
BouncingImage::new("images/windows_logo.png", -8, 3, 2, -1, -1),
|
||||
BouncingImage::new("images/spade.png", 32, -12, 1, 0, 0),
|
||||
BouncingImage::new("images/dvdvideo.png", 20, 6, 5, 1000, 800),
|
||||
BouncingImage::new("images/hackaday.png", 40, 18, 3, 500, 800),
|
||||
];
|
||||
|
||||
let mut display = Display::new(DISPLAY_HOST, DISPLAY_PORT);
|
||||
let mut frame_counter: u32 = 0;
|
||||
|
||||
loop {
|
||||
for bb in images.iter_mut() {
|
||||
if bb.rate > 0 && frame_counter % bb.rate != 0 {
|
||||
continue;
|
||||
}
|
||||
bb.draw_and_move(&mut display);
|
||||
}
|
||||
|
||||
// Send all queued packets for this frame in a single batch.
|
||||
display.flush_all_pending();
|
||||
|
||||
frame_counter += 1;
|
||||
|
||||
// A small delay to control the frame rate (approx 60 FPS).
|
||||
std::thread::sleep(Duration::from_millis(16));
|
||||
}
|
||||
}
|
||||
|
279
src/main.rs
279
src/main.rs
|
@ -1,15 +1,15 @@
|
|||
mod buffer;
|
||||
use crate::buffer::{RingBuffer};
|
||||
use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
use std::net::{ToSocketAddrs, UdpSocket};
|
||||
use std::time::Duration;
|
||||
use std::sync::{Arc, Condvar, Mutex};
|
||||
use std::thread;
|
||||
use std::sync::{Mutex,Arc};
|
||||
use socket2::{Domain, Socket, Type};
|
||||
use std::net::{Ipv4Addr, SocketAddr};
|
||||
mod color;
|
||||
|
||||
// Constants from the C code
|
||||
const QUEUE_LEN: usize = 1000;
|
||||
const MSG_PAYLOAD_SIZE: usize = 7 * 211;
|
||||
const MSG_PAYLOAD_SIZE: usize = 7 * 160;
|
||||
const MSGSIZE: usize = 2 + MSG_PAYLOAD_SIZE;
|
||||
|
||||
const DISPLAY_HOST: &str = "100.65.0.2";
|
||||
|
@ -55,12 +55,6 @@ struct BouncingImage {
|
|||
rate: u32,
|
||||
}
|
||||
|
||||
trait Drawable {
|
||||
// Associated function signature; `Self` refers to the implementor type.
|
||||
fn rate(&self) -> u32;
|
||||
fn draw_and_move(&mut self, display: &mut Display,tick:u32);
|
||||
|
||||
}
|
||||
impl BouncingImage {
|
||||
/// Initializes a new BouncingImage.
|
||||
fn new(img_file: &str, move_x: i32, move_y: i32, rate: u32, start_x: i32, start_y: i32) -> Self {
|
||||
|
@ -86,30 +80,9 @@ impl BouncingImage {
|
|||
bb
|
||||
}
|
||||
|
||||
|
||||
/// Draws a PNG image at the given coordinates.
|
||||
fn draw_png(&mut self, display: &mut Display, x: i32, y: i32) {
|
||||
|
||||
for sy in 0..self.img.height {
|
||||
for sx in 0..self.img.width {
|
||||
let index = (sy * self.img.width + sx) as usize * 4;
|
||||
let rgba = &self.img.pixels[index..index + 4];
|
||||
if rgba[3] > 0 { // Check alpha channel
|
||||
//display.set_pixel((x + sx as i32) as u16, (y + sy as i32) as u16, rgba[0], rgba[1], rgba[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
impl Drawable for BouncingImage {
|
||||
fn rate(&self) -> u32 {
|
||||
return self.rate;
|
||||
}
|
||||
|
||||
/// Draws the image and updates its position.
|
||||
fn draw_and_move(&mut self, display: &mut Display,_: u32) {
|
||||
self.draw_png(display, self.x, self.y);
|
||||
fn draw_and_move(&mut self, display: &mut Display) {
|
||||
display.draw_png(&self.img, self.x, self.y);
|
||||
|
||||
self.x += self.move_x;
|
||||
self.y += self.move_y;
|
||||
|
@ -123,91 +96,11 @@ impl Drawable for BouncingImage {
|
|||
}
|
||||
}
|
||||
|
||||
struct Circle {
|
||||
x: Arc<Mutex<u32>>,
|
||||
y: Arc<Mutex<u32>>,
|
||||
}
|
||||
impl Circle {
|
||||
|
||||
fn new(x:Arc<Mutex<u32>>, y: Arc<Mutex<u32>>) -> Self {
|
||||
Circle {
|
||||
x,
|
||||
y
|
||||
}
|
||||
}
|
||||
|
||||
/// This exploits the eight-way symmetry of a circle.
|
||||
fn draw_circle_octants(&mut self, display: &mut Display, cx: i32, cy: i32, x: i32, y: i32, r: u8, g: u8, b: u8) {
|
||||
display.set_pixel(cx + x, cy + y, r, g, b);
|
||||
display.set_pixel(cx - x, cy + y, r, g, b);
|
||||
display.set_pixel(cx + x, cy - y, r, g, b);
|
||||
display.set_pixel(cx - x, cy - y, r, g, b);
|
||||
display.set_pixel(cx + y, cy + x, r, g, b);
|
||||
display.set_pixel(cx - y, cy + x, r, g, b);
|
||||
display.set_pixel(cx + y, cy - x, r, g, b);
|
||||
display.set_pixel(cx - y, cy - x, r, g, b);
|
||||
}
|
||||
|
||||
/// Draws a circle using the Midpoint Circle Algorithm.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `center_x`: The x-coordinate of the circle's center.
|
||||
/// * `center_y`: The y-coordinate of the circle's center.
|
||||
/// * `radius`: The radius of the circle. Must be non-negative.
|
||||
/// * `r`, `g`, `b`: The RGB color components for the circle.
|
||||
pub fn draw_circle(&mut self, display: &mut Display, center_x: u32, center_y: u32, radius: u32, r: u8, g: u8, b: u8) {
|
||||
if radius < 0 {
|
||||
// Or return an error: Err("Radius cannot be negative".into())
|
||||
return;
|
||||
}
|
||||
let radius_i32:i32 = radius.try_into().unwrap();
|
||||
let mut x:i32 = 0;
|
||||
let mut y:i32 = radius_i32;
|
||||
// Initial decision parameter
|
||||
let mut d:i32 = 3 - 2 * radius_i32;
|
||||
|
||||
// Iterate through the first octant and draw points in all 8 octants
|
||||
while y >= x {
|
||||
self.draw_circle_octants(display,center_x.try_into().unwrap(), center_y.try_into().unwrap(), x, y, r, g, b);
|
||||
|
||||
x += 1;
|
||||
|
||||
// Update the decision parameter
|
||||
if d > 0 {
|
||||
y -= 1;
|
||||
d = d + 4 * (x - y) + 10;
|
||||
} else {
|
||||
d = d + 4 * x + 6;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
impl Drawable for Circle {
|
||||
|
||||
fn rate(&self) -> u32 {
|
||||
1
|
||||
}
|
||||
|
||||
/// Helper method to draw the 8 symmetric points for a given (x, y) offset.
|
||||
fn draw_and_move(&mut self, display: &mut Display,tick:u32) {
|
||||
let hsv_color = color::Hsv {
|
||||
h: ((tick/200)%360).try_into().unwrap(),
|
||||
s: 1.0,
|
||||
v: 1.0,
|
||||
};
|
||||
let rgb: color::Rgb = hsv_color.into();
|
||||
let draw_y =*self.x.lock().unwrap();
|
||||
let draw_x = *self.y.lock().unwrap();
|
||||
let radius = (tick/30) % (300/2);
|
||||
self.draw_circle(display,draw_y,draw_x,radius.try_into().unwrap(),rgb.r,rgb.g,rgb.b);
|
||||
}
|
||||
}
|
||||
|
||||
/// Manages the connection and data sent to the display.
|
||||
struct Display {
|
||||
socket: UdpSocket,
|
||||
bufs: Vec<[u8; MSGSIZE]>,
|
||||
pair: Arc<(Mutex<RingBuffer::<i32, QUEUE_LEN>>,Condvar)>,
|
||||
next_buf: usize,
|
||||
pos_in_buf: usize,
|
||||
}
|
||||
|
@ -229,10 +122,14 @@ impl Display {
|
|||
buf[0] = 0x00;
|
||||
buf[1] = 0x01;
|
||||
}
|
||||
|
||||
let pair = Arc::new((
|
||||
Mutex::new(RingBuffer::<i32, QUEUE_LEN>::new()),
|
||||
Condvar::new(),
|
||||
));
|
||||
Display {
|
||||
socket,
|
||||
bufs,
|
||||
pair,
|
||||
next_buf: 0,
|
||||
pos_in_buf: 0,
|
||||
}
|
||||
|
@ -250,147 +147,87 @@ impl Display {
|
|||
}
|
||||
|
||||
/// Sets a pixel color at a specific coordinate.
|
||||
fn set_pixel(&mut self, x: i32, y: i32, r: u8, g: u8, b: u8) {
|
||||
if let (Ok(output_x),Ok(output_y)) = (u16::try_from(x), u16::try_from(y)) {
|
||||
fn set_pixel(&mut self, x: u16, y: u16, r: u8, g: u8, b: u8) {
|
||||
let offset = 2 + self.pos_in_buf * 7;
|
||||
let buf = &mut self.bufs[self.next_buf][offset..offset + 7];
|
||||
buf[0] = output_x as u8;
|
||||
buf[1] = (output_x >> 8) as u8;
|
||||
buf[2] = output_y as u8;
|
||||
buf[3] = (output_y >> 8) as u8;
|
||||
buf[0] = x as u8;
|
||||
buf[1] = (x >> 8) as u8;
|
||||
buf[2] = y as u8;
|
||||
buf[3] = (y >> 8) as u8;
|
||||
buf[4] = r;
|
||||
buf[5] = g;
|
||||
buf[6] = b;
|
||||
|
||||
self.pos_in_buf += 1;
|
||||
if self.pos_in_buf == 211 {
|
||||
if self.pos_in_buf == 160 {
|
||||
self.flush_frame();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
/// Clears the entire screen to black.
|
||||
#[allow(dead_code)]
|
||||
fn blank_screen(&mut self) {
|
||||
for x in 0..DISPLAY_WIDTH {
|
||||
for y in 0..DISPLAY_HEIGHT {
|
||||
//self.set_pixel(x as u16, y as u16, 0, 0, 0);
|
||||
/// Draws a PNG image at the given coordinates.
|
||||
fn draw_png(&mut self, png: &PngData, x: i32, y: i32) {
|
||||
for sy in 0..png.height {
|
||||
for sx in 0..png.width {
|
||||
let index = (sy * png.width + sx) as usize * 4;
|
||||
let rgba = &png.pixels[index..index + 4];
|
||||
if rgba[3] > 0 { // Check alpha channel
|
||||
self.set_pixel((x + sx as i32) as u16, (y + sy as i32) as u16, rgba[0], rgba[1], rgba[2]);
|
||||
}
|
||||
}
|
||||
self.flush_frame();
|
||||
}
|
||||
}
|
||||
fn send_thread(&mut self) {
|
||||
let consumer_pair = Arc::clone(&self.pair);
|
||||
let consumer_handle = thread::spawn(move || {
|
||||
let mut items_processed = 0;
|
||||
loop {
|
||||
let (lock, cvar) = &*consumer_pair;
|
||||
let mut buffer = lock.lock().unwrap();
|
||||
|
||||
|
||||
/// Unpacks a 4-byte slice into two u16 values (little-endian).
|
||||
fn unpack_coordinates(buffer: &[u8]) -> Option<(u16, u16)> {
|
||||
if buffer.len() != 4 {
|
||||
return None;
|
||||
// Use a while loop to handle spurious wakeups.
|
||||
// The thread will sleep until the buffer is no longer empty.
|
||||
while buffer.is_empty() {
|
||||
// `cvar.wait` atomically unlocks the mutex and waits.
|
||||
// When woken, it re-locks the mutex before returning.
|
||||
buffer = cvar.wait(buffer).unwrap();
|
||||
}
|
||||
// Try to convert the first 2 bytes to a u16 for x.
|
||||
let x_bytes: [u8; 2] = buffer[0..2].try_into().ok()?;
|
||||
// Try to convert the next 2 bytes to a u16 for y.
|
||||
let y_bytes: [u8; 2] = buffer[2..4].try_into().ok()?;
|
||||
|
||||
// Reconstruct the u16 values from their little-endian byte representation.
|
||||
let x = u16::from_le_bytes(x_bytes);
|
||||
let y = u16::from_le_bytes(y_bytes);
|
||||
// At this point, the buffer is not empty.
|
||||
if let Some(item) = buffer.pop() {
|
||||
println!(" Consumed: {}", item);
|
||||
items_processed += 1;
|
||||
}
|
||||
|
||||
Some((x, y))
|
||||
drop(buffer);
|
||||
thread::sleep(Duration::from_millis(300)); // Consumer is slow
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
|
||||
let x:Arc<Mutex<u32>> = Arc::new(Mutex::new(0));
|
||||
let x_thread = x.clone();
|
||||
|
||||
let y:Arc<Mutex<u32>>= Arc::new(Mutex::new(0));
|
||||
let y_thread = y.clone();
|
||||
|
||||
let circle = Box::new(Circle::new(x,y));
|
||||
let mut images:Vec<Box<dyn Drawable>> = vec![
|
||||
// Box::new(BouncingImage::new("images/unicorn_cc.png", 13, -10, 1, -1, -1)),
|
||||
// Box::new(BouncingImage::new("images/windows_logo.png", -8, 3, 2, -1, -1)),
|
||||
// Box::new(BouncingImage::new("images/spade.png", 32, -12, 1, 0, 0)),
|
||||
// Box::new(BouncingImage::new("images/dvdvideo.png", 20, 6, 5, 1000, 800)),
|
||||
// Box::new(BouncingImage::new("images/hackaday.png", 40, 18, 3, 500, 800)),
|
||||
circle
|
||||
let mut images = vec![
|
||||
BouncingImage::new("images/unicorn_cc.png", 13, -10, 1, -1, -1),
|
||||
];
|
||||
|
||||
let mut display = Display::new(DISPLAY_HOST, DISPLAY_PORT);
|
||||
let mut frame_counter: u32 = 0;
|
||||
thread::spawn(move || {
|
||||
let bind_address = format!("0.0.0.0:12345");
|
||||
let socket = Socket::new(Domain::IPV4, Type::DGRAM, None).unwrap();
|
||||
socket.set_reuse_address(true).unwrap();
|
||||
//socket.set_nonblocking(true).unwrap();
|
||||
socket.join_multicast_v4(&Ipv4Addr::new(239, 1, 1, 1), &Ipv4Addr::new(0, 0, 0, 0)).unwrap();
|
||||
socket.bind(&"0.0.0.0:1234".parse::<SocketAddr>().unwrap().into()).unwrap();
|
||||
// Bind the UDP socket to the specified address and port.
|
||||
let socket: UdpSocket = socket.into();
|
||||
|
||||
println!("Listening for UDP packets on {}", bind_address);
|
||||
display.send_thread();
|
||||
|
||||
// Create a buffer to hold incoming data. 4 bytes for two u16 values.
|
||||
let mut buf = [0u8; 4];
|
||||
|
||||
loop {
|
||||
// Wait for a packet to arrive.
|
||||
match socket.recv_from(&mut buf) {
|
||||
Ok((number_of_bytes, src_addr)) => {
|
||||
println!("\nReceived {} bytes from {}", number_of_bytes, src_addr);
|
||||
|
||||
// Ensure we received the correct number of bytes.
|
||||
if number_of_bytes == 4 {
|
||||
// Unpack the buffer into coordinates.
|
||||
if let Some((x_rev, y_rev)) = unpack_coordinates(&buf) {
|
||||
|
||||
println!("Received Coordinates: X = {}, Y = {}", x_rev, y_rev); let x_32:u32 = x_rev.into();
|
||||
let y_32:u32 = y_rev.into();
|
||||
*x_thread.lock().unwrap() = x_32;
|
||||
*y_thread.lock().unwrap() = y_32;
|
||||
|
||||
|
||||
} else {
|
||||
// This case should ideally not be reached if number_of_bytes is 4.
|
||||
eprintln!("Error: Failed to unpack coordinate data.");
|
||||
}
|
||||
} else {
|
||||
eprintln!(
|
||||
"Warning: Received packet with incorrect size ({} bytes). Expected 4.",
|
||||
number_of_bytes
|
||||
);
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
eprintln!("Error receiving data: {}", e);
|
||||
// Decide if you want to break the loop on an error.
|
||||
// For a continuous server, you might just log and continue.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
});
|
||||
|
||||
// display.blank_screen();
|
||||
let mut tick:u32 = 0;
|
||||
loop {
|
||||
for (i, bb) in images.iter_mut().enumerate() {
|
||||
if bb.rate() > 0 && frame_counter % bb.rate() != 0 {
|
||||
if bb.rate > 0 && frame_counter % bb.rate != 0 {
|
||||
continue;
|
||||
}
|
||||
bb.draw_and_move(&mut display,tick);
|
||||
bb.draw_and_move(&mut display);
|
||||
}
|
||||
display.flush_frame();
|
||||
tick+=1;
|
||||
frame_counter += 1;
|
||||
|
||||
println!("test");
|
||||
// A small delay to control the frame rate
|
||||
//std::thread::sleep(Duration::from_millis(16));
|
||||
std::thread::sleep(Duration::from_millis(16));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue